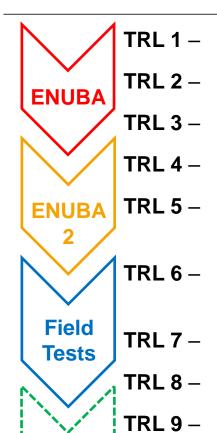

# Objectives and First Results of the German eHighway Field Test ELISA



Indo-German Workshop on Innovative Charging Technology for Heavy Duty Vehicles Manfred Boltze, Technische Universität Darmstadt, Germany










## **Introduction**

## Technology Readiness Levels – General Concept and Status of the eHighway





TRL 1 - basic principles observed

TRL 2 – technology concept formulated

**TRL 3** – experimental proof of concept

**TRL 4** – technology validated in lab

**TRL 5** – technology validated in relevant environment (test under lab conditions; start of system integration)

**TRL 6** – technology demonstrated in relevant environment (test under realistic conditions)

**TRL 7** – system prototype demonstration in operational environment (1-5 years)

**TRL 8** – system complete and qualified

**TRL 9** – actual system proven in operational environment (competitive manufacturing in the case of key enabling technologies)

European Commission: HORIZON 2020, Work Programme 2014-2015, Annex G;

Deutsches Institut für Normung (DIN): Raumfahrtsysteme – Definition des Technologie-Reifegrades (TRL) und der Beurteilungskriterien. Norm-Entwurf (ISO 16290:2013). Berlin 2014







Sources:

## **Testing Under Real Traffic and Real Road Operations**



Real traffic and traffic composition
Real road operations
Real environmental conditions
Real incidents
Real constructional conditions ...













- How much electric energy and fuel are consumed by OH trucks?
- What are the impacts on driving behaviour and traffic safety?
- Are there any problems regarding the visibility of traffic signs?
- Are there complications in cleaning traffic signs and cutting the green?









## Testing with Real Transport Companies and Real Transport Processes



| Vehicl<br>e | ELISA Transport Partner                                | Vehicle<br>Delivery<br>(Year/Month) | Transported<br>Goods                            | No. of<br>vehicles in<br>Rhein-Main |
|-------------|--------------------------------------------------------|-------------------------------------|-------------------------------------------------|-------------------------------------|
| 01          | Spedition Hans Adam Schanz<br>GmbH & Co. KG            | 2019/05                             | emulsion paint<br>and other<br>Caparol products | 9                                   |
| 02          | Ludwig Meyer<br>GmbH & Co. KG                          | 2019/09                             | consumer goods<br>esp. refrigerated<br>food     | 80                                  |
| 03          | Contargo GmbH & Co. KG (Rhenus Trucking GmbH & Co. KG) | 2020/06                             | containers                                      | > 1.000                             |
| 04          | Knauf Gips<br>KG                                       | 2020/06                             | construction<br>materials                       | 40                                  |
| 05          | <b>Merck</b><br>KGaA                                   | 2020/06                             | liquid sludge                                   | 6<br>Status: March 2019             |



- What are the specific requirements of different types of transport companies on using the eHighway system?
- How can transport companies integrate the eHighway trucks into their daily tours?
- How robust is the eHighway technology under frequent use?







## Testing with a Real Electric Power System



Real integration into the power grid
Real consumption and recuperation of energy
Real accounting and clearing





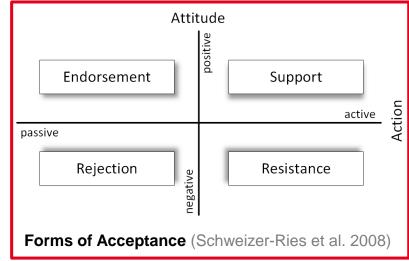


- How can the eHighway system be integrated into the overall power grid?
- Which impact has a larger number of eHighway trucks on the power supply network?
- How to design the accounting and clearing system for electric energy?








## **Testing Acceptance with Real People**



Analyzing acceptance by different stakeholders Identifying (critical) influencing factors
Analyzing changes of acceptance over time

## Relevant stakeholder groups:

- transport companies
- eHighway truck drivers and other truck drivers
- other road users and the general public
- road operators and electricity suppliers
- emergency and rescue service operators
- ...



socio-political acceptance

market acceptance

local acceptance

- How are different stakeholder groups perceiving the eHighway system?
- Which factors are influencing the acceptance rate?
- How are the acceptance rates changing over time?









## **Developing Sub-systems**



Further development of eHighway vehicles and infrastructure

Development and specification of many processes and procedures to deal with practical aspects of system implementation and operation









## **ELISA: Sample Sub-System Developments**

- Planning, approval and tendering process for the eHighway infrastructure
- Processes for emergency and rescue services
- Software and processes for control center operations
- Specific aspects of formal vehicle registration









## **Creating Awareness and Acceptance**



Supporting the visibility of the system

Create possibilities to see, "feel" and test the system

Clear communication about the reasons for the project

**Careful public relations management** 



## ELISA: Sample Activities to Create Awareness and Acceptance

- Information booths and visitor centre at the test track
- Project website, information and marketing materials
- Press conferences, interviews for press and other media
- Targeted stakeholder communication











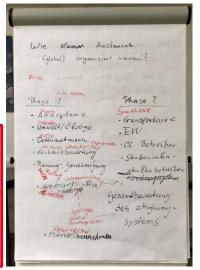


## **Disseminating Results**



**Presentations and publications** 

Placing the topic in journals and conferences (as editor or organizer)


Contributing to working groups for standardization

National + international exchange Teaching









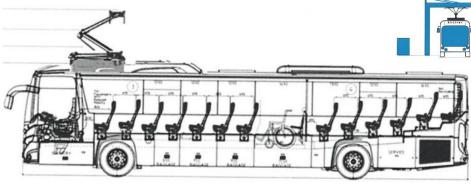
## ELISA: Sample Activities for Disseminating Results

- Conference presentations: ERS, Hypermotion, DSVK, CIGOS, TRB, ICPLT, ...
- Publications: Book "eHighway Implementation Manual", various journal articles
- Development of implementation guidelines for specific stakeholder groups
- Bringing the topic into working groups for national standardization (FGSV etc.)





## Identifying Needs for System Amendments and Further Potential Users




Analyzing real use cases and user requirements Identifying needs for system amendments Identifying further potential users









## ELISA: Sample Activities for Identifying Needs for System Amendments

- Questionnaire for Transport Companies on Vehicle Requirements
- Identifying demand for other vehicle types (e.g. 16 t trucks)
- Identifying useful truck equipments (dumper hydraulics, PTO for cooling, ...)
- Feasibility Study on eHighway Buses

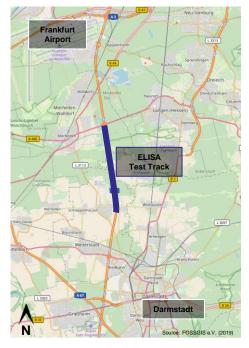






## **Providing a Nucleus for Large-scale Implementation**




Supporting the development of large-scale implementation strategies

Developing a plan for using the test track after the testing period

Developing a plan for local system expansion

| Be                                    | ewertungskriterien                    |  |  |
|---------------------------------------|---------------------------------------|--|--|
|                                       | Seitenraumverfügbarkeit               |  |  |
|                                       | Höhenrelevante Einschränkungen        |  |  |
| Verfügbarkeit von<br>Flächen und Raum | Mindestabstände zu                    |  |  |
|                                       | Landeplätze Hubschrauber              |  |  |
|                                       | Entwässerung                          |  |  |
|                                       | Umweltverträglichkeit                 |  |  |
| Planungsrelevante<br>Kriterien        | Schutzgebiete                         |  |  |
|                                       | Flurbereinigung                       |  |  |
|                                       | Erdkabeltrassen-Verläufe              |  |  |
| _                                     | Fläche für Unterwerke                 |  |  |
| Energieversorgung                     | Zugang zum Mittelspannungsnetz        |  |  |
|                                       | Abstand zur nächsten Ladestation      |  |  |
| Bau. Betrieb und                      | Temp. Seitenstreifenfreigabe          |  |  |
| Verkehrs-                             | Anzahl Fahrstreifen                   |  |  |
| management                            | Höhenprofil                           |  |  |
|                                       | Anzahl Logistikstandorte in d. Nähe   |  |  |
| Verkehrsnachfrage                     | Logistikflächen in Entwicklung        |  |  |
|                                       | Integrationsfähigkeit in Tourenmuster |  |  |

| Farbkodierung und Nutzwerte                |            |                              |         |        |        |      |  |  |  |  |
|--------------------------------------------|------------|------------------------------|---------|--------|--------|------|--|--|--|--|
| 4                                          | 4 3        |                              | 2       | 1      |        | 0    |  |  |  |  |
| Ohne<br>Einschrän-<br>kungen Nicht möglich |            |                              |         |        |        |      |  |  |  |  |
| Bewertung                                  |            |                              | Gewicht | Punkte | Nutzen | Code |  |  |  |  |
|                                            |            | tenraum-<br>fügbarkeit       | 5       | 4      | 20     |      |  |  |  |  |
| Verfüg-                                    |            | henrelevante<br>schränkungen | 5       | 0      | 0      |      |  |  |  |  |
| barkeit<br>von<br>Flächen                  | Mir<br>zu. | destabstände<br>             | 5       | 2      | 10     |      |  |  |  |  |
| und Raum                                   |            | ndeplätze<br>bschrauber      | 5       | 4      | 20     |      |  |  |  |  |
|                                            | Ent        | wässerung                    | 5       | 4      | 20     |      |  |  |  |  |
| Weitere                                    |            |                              | 75      |        |        |      |  |  |  |  |
|                                            |            |                              |         | Total  |        |      |  |  |  |  |









## ELISA: Sample Activities for Providing a Nucleus for Large-scale Implementation

- Tool for assesing the eHighway equipment potential of road sections (BeTSIE)
- Optimimal allocation of charge-in-motion infrastructure for trucks on German motorways (dissertation Kevin Rolko)
- Planning extension and follow-up use of the test track (e.g. Airliner)



Pictures: © IVV







# **Field Tests** eHighway Roles The

## **Field Tests – Important Milestones** on the Way to Large-scale Implementation



#### Validator and Demonstrator

Testing in a realistic environment:

- Real traffic and road operations
- Real transport companies and transport processes
- Real power supply system
- Real people (Acceptance)

#### **Facilitator**

Developing sub-systems

Creating awareness and acceptance

Disseminating results

Identifying needs for system amendments and further potential users

Providing a nucleus for large-scale implementation

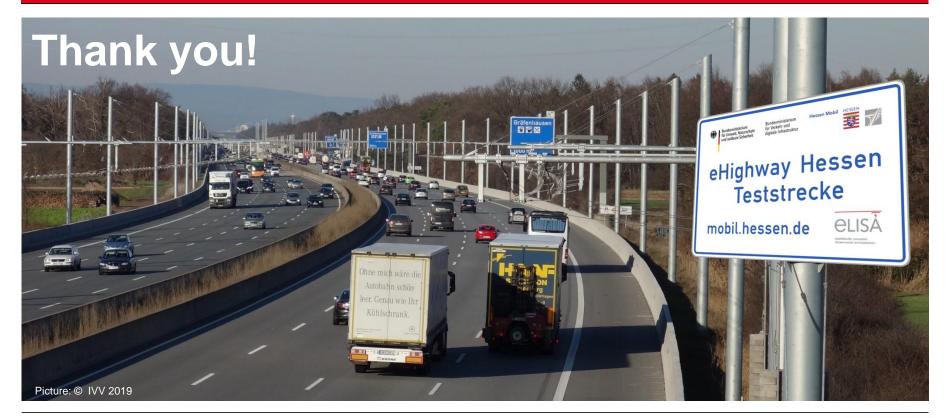













# Objectives and First Results of the German eHighway Field Test ELISA



Indo-German Workshop on Innovative Charging Technology for Heavy Duty Vehicles Manfred Boltze, Technische Universität Darmstadt, Germany







